独特博弈猜想:NP难解的近似难题
2025-05-10
2002年,Khot提出独特博弈猜想(UGC),认为确定一种名为“独特博弈”的游戏近似值的问题具有NP难的计算复杂度。这一猜想在近似难解性理论中具有广泛应用,如果成立且P≠NP,则许多重要问题不仅无法在多项式时间内得到精确解,也无法得到良好的多项式时间近似解。学术界对UGC的真伪存在争议,其等价表述多种多样,例如标签覆盖问题、Max2Lin(k)问题等,都与计算拓扑相关。近些年,虽然部分更强的形式已被证伪,但对UGC的研究促进了许多有趣的数学研究,并有学者对其进行了部分证明。
开发
NP难